
5.73.0

Clinical Characterization and
Prediction of Bipolar Disorder
Evolution

Petr Kloucek, Armin von Gunten and Sylfa Fassassi

Article

https://doi.org/10.3390/jcm14072159

https://www.mdpi.com/journal/jcm
https://www.scopus.com/sourceid/21101054449
https://www.ncbi.nlm.nih.gov/pubmed/?term=2077-0383
https://www.mdpi.com/journal/jcm/stats
https://www.mdpi.com
https://doi.org/10.3390/jcm14072159


Academic Editor: Irina Esterlis

Received: 13 February 2025

Revised: 6 March 2025

Accepted: 12 March 2025

Published: 21 March 2025

Citation: Kloucek, P.; von Gunten, A.;

Fassassi, S. Clinical Characterization

and Prediction of Bipolar Disorder

Evolution. J. Clin. Med. 2025, 14, 2159.

https://doi.org/10.3390/jcm14072159

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Clinical Characterization and Prediction of Bipolar
Disorder Evolution

Petr Kloucek 1,* , Armin von Gunten 1 and Sylfa Fassassi 2

1 SUPAA, Hôpital de Cery, Route de Cery, CH-1008 Prilly, Lausanne, Switzerland; armin.von-gunten@chuv.ch
2 Service de Psychiatrie Générale, Site de Cery, Lausanne University Hospital, Route de Cery,

CH-1008 Prilly, Lausanne, Switzerland; sylfa.fassassi@chuv.ch

* Correspondence: petr.kloucek@mac.com

Abstract: Background: This paper addresses the possibility of replacing subjective evalua-

tions of mental disorders with analytical tools based on large data provided by wearable

sensors in combination with subsequent complexity mesoscale data projection using con-

stitutive mathematical frameworks. Methods: The presented methods are based on the

combination of a complexity/fractal approach and stochastic optimization, yielding Digital

Mental Biomarkers (DMBs). Results: Analytic indexing can effectively augment the Young

Mania Rating Scale, DSM-5 criteria, or structured interview diagnostics. The analytical

approach allows us to carry out a prediction of mental disorder evolution as well as a

subsequent probability characterization of BD episode progression over time. Conclusions:

The presented analytical framework presents a semicontinuous diagnostic tool in the area

of mental disorders, specifically applicable to bipolar disorder with corresponding manic

episode indexing.

Keywords: bipolar disorder; actigraphy; fractal dimension; Hurst exponent; stochastic

optimization

1. Introduction

We present conceptual analytical biomarkers capable of differentiating and predicting

acute phases (manic, mixed, or depressive episodes) from transitional phases and euthymic

periods in people with bipolar disorder (BD). Ultimately, we expect this to allow us to

predict both the clinical course and early diagnosis in recurrent depression secondary to

BD as opposed to recurrent depression unrelated to BD. Predicting the clinical course of BD

would also allow us to conduct anticipatory reliable monitoring of therapeutic responses.

1.1. Bipolar Disorder

BD is a chronic mood disorder characterized by a combination of manic and depressive

episodes over time. BD is a disabling condition [1] that usually starts in early adulthood.

A late diagnosis worsens the prognosis, causing an increase in complications, the appear-

ance of comorbidities, and/or resistance to the prescribed treatment. A large body of

evidence shows that there is still an excessive delay in the accurate diagnosis of BD. Clinical

research should ideally make it possible to better define BD in order to distinguish, during a

depressive episode (i.e., often the first manifestation of the disorder), whether it is a bipolar

or unipolar disorder. This could help reduce the taxonomic delay conceptualized by K.

Fritz et al., [2], such as the lack of the detection of the disease once the first symptoms

have occurred. Scientific studies should also help reduce the gaps in our knowledge or
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our inability to define the early clinical presentation(s) of BD before the emergence of an

episode, which could prevent delays in detection [2].

Hypomania or mania, once they occur, are the only markers currently available that

can be used to diagnose BD. However, BD is a complex disorder of affective, cognitive,

and behavioral symptoms and signs evolving over time. Diagnosis today is based on

combinations of subjective and objective features that accompany various phases of BD,

with little or nothing at hand to accurately predict incipient changes in the various phases

of BD. The predictive unreliability of subjective symptoms suggests searching for objective

parameters, allowing for the prediction of temporal changes in clinical BD manifestations.

Incipient sleep and activity pattern changes may be among the more useful markers that

can be used to predict phase changes in BD. Indeed, activity is one of the key elements of

bipolar symptomatology that needs to be interpreted from a dynamic perspective, allowing

us to recognize the complexity of human physiology and rhythms. Recent changes in

diagnostic criteria for BD have recognized the key role of activity in the symptomatology of

BD. This is worth considering because, unlike mood, which we measure with clinical scales,

activity can be measured objectively. It is also important to note that mood variations

associated with BD may undergo semi-chaotic dynamics [3].

Clinicians use standardized clinical scales, e.g., DSM-5 criteria (American Psychiatric

Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (2013)), and

structured interviews [4] as diagnostics. Replacing clinical (statistical) examinations with

analytical complexity tools has the potential to guide clinicians toward performing earlier

interventions, resulting in treatments that are more effective and often result in fewer

side effects.

The difficulties of treating major depression and bipolar depression, as well as recent

advances both in clinical guidelines and in pharmacological treatment, can be found in [5–7].

One possible problem is overshadowing of BD by an observable depression phase, c.f.,

Figure 1.

Asymptomatic
Initial prodrome

Bipolar Disorder

Depression/BD Overlap

Recurrence

Complexity Indexing Range
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Pre-prodromal period
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Distal and Proximal prodrom

Mood Episode
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Behavioral Disruption

Figure 1. The three distinctive regions of evolution. The application of the complexity/fractal

mathematical approach allows us to not only quantitatively index BD but also to introduce BD

evolution prediction, as well as global and resistance indices (not discussed in this paper). A

mathematical approach can distinguish between depressive episodes covering BD that can be seen

beneath the depressive layer.

1.2. Application of Actigraphy

Actigraphic data are usually transferred to a computer and analyzed using software.

These mathematical theories can translate movement into activity counts over predefined

durations, called "movements per epoch". Actigraphy uses customizable activity thresh-
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olds to distinguish between different intensities of activities and sleep. Scoring is often

automated by mathematical models. Different variables are extracted from self-similar

actimetric data: (i) sleep variables (timing, duration, etc.); (ii) activity variables (amount of

activity, mean activity, etc.); and (iii) rhythm variables (period, amplitude, and phase) [8].

Actigraphy is a non-invasive method of monitoring human rest–activity cycles, par-

ticularly during BD manic episodes. The analysis of the actigraphic data of a manic

patient can provide several critical pieces of information about a patient’s sleep–wake

patterns. Traditional linear analyses of actigraphy data in manic patients face several

limitations, including sensitivity to erratic activity patterns and an inability to capture mul-

tidimensional changes that can be observed in manic episodes. The complexity projection

method presented provides a more comprehensive picture of what a patient’s condition

might encompass.

Activity analytics with the subsequent mesoscale projection of microscopic sensor data

lends itself as a suitable digital biomarker to follow over time. The objective measurement

of activity using an actigraphic device is now an accepted method [9].

2. Methods

The presented method focuses on the usage of wearable sensors and a subsequent

coarse-graining of large amounts of microscopic equidistant self-similar time sequences

with (multi-)fractal structures. The complexity/fractal mesoscale/medical projection using

the Hurst exponent [10–13] allows for analytic indexing replacing, e.g., Young Mania Rating

Scale indices. It allows the prediction of mental disorders using a stochastic approach as

well as probability characterization of BD episodes.

The Hurst exponent can be interpreted as a probability measure of a decay of time-

series autocorrelation. The decay indicates that an observed signal is losing its repetitive

pattern, i.e., a delayed copy of itself. Thus, decay of autocorrelation can be considered to be

an increasing absence of “memory”, characterized by an absence of predictable behavioral

patterns. Moreover, such decay also exhibits itself as a lack of a measured response to both

external and/or internal stimuli. We hypothesize that the presence of a mental disorder can

be detected and quantified by the time evolution of complexity surrogate signs of partial

behavioral patterns autocorrelation in high-dimensional spaces modeling physiological,

behavioral, topological, and environmental influences. Accepting this hypothesis, we

conjecture that various mental disorders differ by their complexity/fractal dimension.

The presented approach, applicable, in general, to various objective diagnoses of

mental disorders, combines longer time acquisition of surrogate data with subsequent

mathematical coarse-graining of the raw input using complexity projections as well as

stochastic optimization to achieve short-term predictability.

The first focal point is the introduction of Digital Mental Biomarkers (DMB). Specifically,

the complexity projections of bio-sensor-generated time sequences open possibilities for

quantitative re-definition of the Young Mania Rating Scale (YMRS), c.f., Section 2.2.

The second focal point concerns the predictability of mental states, particularly BD

manic episodes. This possibility has not been explored so-far to our best knowledge. Our

approach is based on finding the best fit of mono-fractal Gaussian white-noise approxima-

tion of a given complexity projection of, possibly, multifractal microscale vital sensory data,

c.f., Section 2.3.

Thirdly, we are proposing a way to evaluate the probability of stable, meta-stable, and

observable BD episodes.

The mathematical approaches to the above two areas are described in some detail in

Section 3.
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2.1. Limitations

Several issues are not addressed in the presented communications.

1. The paper does not provide a broad longitudinal study of the applicability of

accelerometer-based measurements related to BD, as this is well established in the

literature. Nevertheless, the patient data used in this communication are based on

20 weeks of continuous measurements representing about 20,000 time data points.

2. The paper is solely focused on the application of complexity projections of sensory data

and the possibility of providing objective evaluations of BD episodes, their probability

of appearing, as well as their predictability. Consequently, this study focuses on

novel techniques rather than comparative analysis with existing methods. We chose a

patient, code name C207, as an example to demonstrate the presented phenomenology

and methodology.

3. The efficiency of the presented approach is mentioned only briefly in Section 2.2 as it

is not the main focus of the presented paper.

2.2. Digital Mental Biomarkers

The origin of the presented Digital Mental Biomarkers is rooted in the autocorrelation

of repetition of various (past) time-sequence patterns. This autocorrelation is expressed

by the Hurst exponent, i.e., the Hasdorff–Besicovitch dimension of fractal structures of

self-similar sequences. The underlying complexity (low probability of repetition) and its

interpretation as “memory” is shown in Figure 2.
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Figure 2. A possible interpretation of the Hurst exponent, “fractal dimension” in the Mental Dis-

orders framework. Short vs. long (pattern) dependence characterizes low vs. high probability of

behavioral repetitions.

The fractal scale is represented by the Hurst exponent (H), with a range (0, 1). The

exponent is important because it characterizes persistent, positively correlated, i.e., “longer

memory” , sequences if H > 1/2 and negatively correlated, anti-persistent sequences

otherwise. A Wiener process is characterized by H = 1/2 yielding neither persistent nor

anti-persistent behavior represented by surrogate data.

It is important to mention that H is related to fractal dimensions by the formula d − H,

d being the dimension of the ambient space in the case of self-similar time series.

The complexity representation of vital time sequences removes the physical units that

are present in vital surrogate sensor data. This feature is fundamental when analyzing

different time sequences.

An application of the presented complexity projection approach is shown in Figure 3

and Table 1 using the acceleration of the left hand of a BD patient in three dimensions. The H

values below 1
2 indicate rather erratic hand movements corresponding to an anti-persistent

state that can be possibly interpreted as “manic state ” which is negatively correlated.

While the Hurst exponent provides valuable insights into the predictability of rhythm,

it is essential to consider its limitations. The calculation of the Hurst exponent assumes
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stationarity and fractal properties, which may not hold true for all types of time-series data.

Additionally, the interpretation of the Hurst exponent should be context-dependent and

complemented by other analysis techniques. Understanding the specific characteristics and

context of the rhythm being analyzed is crucial to applying the Hurst exponent effectively,

c.f., Table 2.

Table 1. Complexity-based indexing of BD classifies the evolution of repetitive patterns of an observed

one-dimensional surrogate time series as a measure of partial brain activity.

Hurst Exponent Range Behavioral Persistency Interpretation

0–1/3 Low Mania
1/3–1/2 Medium Mild Mania
1/2–2/3 Elevated Stable

2/3–1 High Depression

Figure 3. A graphical visualization of the approach outlined in Section 2 using a complexity projection

of 3D X, Y and Z axes right wrist accelerometer data of the patient C207 with clinical BD diagnosis

represented by different colors.

Table 2. Young Mania Rating Scale (YMRS) versus objective complexity indexing of BD and their

comparison at the days 1, 5, and 10 of the clinical treatment of a BD patient C207.

YMRS Interpretation H: x-Accel H: y-Accel H: z-Accel Average Interpretation

29 Moderate Mania 0.2393 0.1927 0.2122 0.21 Higher Agitation
16 Possible Mania 0.1821 0.2711 0.2373 0.23 Agitation
12 Possible Mania 0.3721 0.2873 0.2927 0.32 Moderate Activity

Correlation 57.76

A clinical application of the proposed methodology is mentioned at Appendix A.

Global View of the Complexity Projection of Acceleration Data

The Hurst exponent is particularly useful in understanding the underlying structure

and predictability of complex rhythmic patterns. Rhythmic patterns often display fractal

properties, meaning that they exhibit similar structures and behaviors across multiple

scales of observation. By calculating the Hurst exponent, we assess the probability of a

rhythm exhibiting persistent or anti-persistent behavior.

A global view of BD evolution spanning about 20 days is shown in Figure 4. The ac-

quired data are segmented into 120 min with a one-minute frequency of data collection. The

plot displays quasi-periodic, non-chaotic patterns of, e.g., depression periods represented

by the longer bars at, e.g., time segments 225–227, 235–237, etc.
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The different complexity distribution of the different direction acceleration points shown

in Figure 4 points to possible multifractal BD structure(s) hidden in the actigraphy data.

Figure 4. The plot shows the Hurst exponent changes during day and night in 120-min segments

of X, Y, and Z complexity projection of the right-hand acceleration during the last approximately

12 days out of 20 days measured. The longer the bars, the closer the patients are to reaching depressive

states and to manic phases otherwise. The bars with length approximately in between those extremes,

the closer the patient BD episodes are to “normal” Wiener-like time sequences generated by the

acceleration of his right hand. The data visualization corresponds to BD patient C207.

2.3. Predictability

An example of the application of this stochastic optimization is shown in Figure 5

considering a patient’s complexity data. This example can serve as a mechanism for early

warning systems such as the prediction of, e.g., manic relapses.

Figure 5. The plot shows application of the presented variational principle to predict the possible evo-

lution of mental deceases and BD in particular. The known data are shortened, and the extrapolation

is compared to the real complexity image of patient C207. The Hurst Exponent evolution is shown for

the dataset C207 and a predictability evolution of the data. The plot is based on 41 Hurst exponents

related to a partition of the original data. Only 31 data points are considered when computing

the extrapolation using the approach described above. The predicted and the assumed unknown

dynamics of the mesoscale Hurst indices evolution are compared. The red dotted line highlights the

assumed unknown Hurst data points, while the light blue rectangles indicate the computed Hurst

exponent evolution prediction. The prediction errors are shown in Table 3.
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Table 3. Summary of the extrapolation shown at Figure 5 in terms of the errors of the Hurst Exponent

estimate. The table also indicates both the mathematical and observational interpretations.

Segment # Hurst Exponent Estimate Estimate Error (in %) Autocorrelation Interpretation

33 0.945 0.395 Low Depression
34 0.433 1.290 Medium Initial prodrom
35 0.395 0.508 Short BD
36 0.613 0.600 Medium Pre-depression
37 0.835 1.007 Long Depression Origin

The approach to predictability fundamentally relies on the coarse-graining of mi-

croscopic self-similar vital time sequences. This step that is performed by complexity

mesoscale projection of microscopic signals is similar to the step from Langevin dynamics

to the Fokker–Planck one.

2.4. Observable and Meta-Stable Mental Episodes

Both the histogram and the PDF shown at Figure 6 resulting from the clinical BD

C207 patient actigraphy data exhibit “inverted double-well” structure. We conclude

that the BD evolution is a mixture of stable and meta-stable mental states. In general,

the propose a stable/meta-stable distinction to be related to the type of local extrema

of PDF. Analytically, the state differentiation is computed in the “dual” state of PDF.

The approach is demonstrated at Figure 7. The probabilities of the particular states are

computed at Table 4.

The probabilities shown at Table 4 point to another important aspect of the presented

semicontinuous approach. We indicate at Figure 1 possible overshadowing of BD by an

observable depression phase. The actigraphy data corresponding to the C207 patient

indicate that the probability of observing the depression episode, 0.34, is higher than the

manic and stable episodes. That is likely to mean that a large-in-time dispersion of both

subjective and objective evaluations would indicate depression phases, states with a higher

observable probability, overlooking the other mental states.

The mathematical aspect of computation of the probabilities shown in Table 4 are

discussed in Section 3.4.

0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Figure 6. Histogram and the corresponding PDF of mesoscopic (complexity/fractal) projection

using the Hurst Exponent of actigraphic data of clinically diagnosed BD patient C207. The PDF

exhibits three local extrema. The local minimum corresponds to actigraphy data that can be closely

represented by the Wiener unbiased process that we represent as a stable state. The local maxima

are generated by self-similar timesequences. The lower value, represented by low Hurst exponents,

corresponds to more “unpredictable” mental states interpreted as manic phase. The other local

maximum is, consequently, interpreted as depression phase characterized by longer memory data

structure repetitions. More details about these data structures are shown at Figure 7.
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Figure 7. The plot indicates the approximate inflection points, 0.18, 0.42, 0.73, and 0.90 of a smooth

PDF corresponding to the (fractal) complexity projection of the actimetry data of patient C207.

Particular BD mental states (BD episodes) are determined by the inflection points. The corresponding

probability of a particular Mood State (i) is discussed in Section 3.4. The exponent interval (0.73, 0.90)

is likely to be the most observable state considering dispersive clinical observations that are not based

on near-continuous sensor-based objective measurable quantities. The probability values are shown in

Table 4. The underlying actimetry-based acceleration data generating the mesoscale PDF appear to be

generated by self-similar time sequences. The time-coarsening is based on 120 min data segmentation.

The blue region corresponds to an unbiased Wiener process, unlike the other two.

The BD episodes probabilities shown in Table 4 correspond to the time distribution of

the Hurst exponents displayed in Figure 5. There are about 16 depression episodes in 31 of

120-min segments and 7 manic episodes of the C207 patient. Thus, spared observations

will most likely report depression episodes, hiding the manic ones. This conclusion is

confirmed by the computed probabilities, c.f., Table 4.

Table 4. The probability of BD episodes shown in Figure 7 of a BD patient C207 computed as discussed

in Section 3.4. Both the manic and depressive episodes are characterized by the local maxima of the

PDF. That would indicate that such episodes might be characterized as meta-stable states as opposed

to Wiener processes occurring in the blue region shown in Figure 7 surrounding local minimum.

Meta-Stable: Mania Stable Likely Observable: Depression

0.22 0.30 0.34

3. Mathematical Models

3.1. Variational Principle Applicable to Evaluation of the Hurst Exponent

We address fractal dimension estimates of discrete-time sequences using a variational

principle that is similar to the approach advocated in [14].

Consider a constitutive law of invariance. Specifically, assume dist{xi,
1
2 (xi−1 + xi+1}

to be proportional to a time or spatial resolution via a power law

n

∑
i=1

dist{xi,
1
2 (xi−1 + xi+1} ∼

a min{(dist(xi, xi+1) | i = 1, . . . , n}h, a ≥ 0, h ∈ (0, 1).

(1)
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We translate this law as follows. Consider a self-similar time sequence X ≡ {xi, i =

1, . . ., 2m + 1} such that xi ≡ f (ti) where f represents surrogate, possibly sensory, data at

times ti ≡ i × T
2m+1 , i ∈ (0, 2m + 1), 2m + 1 being the total number of complexity, mesoscale,

projection of a microscale data time sequence.

Let, on a time interval (0, T),

△m
def
=

2m+1

∑
i=2

∣

∣

∣
xi −

1
2 (xi−1 + xi+1)

∣

∣

∣
. (2)

Assume that the equivalent to (1) is

△m ∼ a

(

T

2m + 1

)1−h

, a ≥ 1, h ≥ 1. (3)

Solve the following variational problem to identify the scaling constants am, hm by

considering for T > 0 given,

{am, hm} ≡

ArgMin











√

√

√

√

m

∑
k=1

(

△m − a

(

T

2m + 1

)1−h
)2

| a ≥ 1, h ≥ 1











.
(4)

We note the the “cost function” appearing in the variational formulation (4) is convex

both in terms of the amplitude scaling parameter a as well as the Hurst power parameter h,

c.f., Figure 8.
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Figure 8. An example of a cross-section plot of the cost function

√

∑
m
k=1

(

△m − a
(

T
2m+1

)1−h
)2

appearing at (4). The plot represents a fixed value of h = 0 and 200 different values of the amplitude

scaling parameter a in the range (1, 20) with the resolution 0.1. The points appearing in (2) correspond

to a fractional white-noise process generating a sequence of 524, 288 data points. The cross-section

convexity holds for all the values of a as well as h.

Examples

We show some approximation capabilities of the method described in Section 3.1 on

two examples related to almost nowhere and nowhere differentiable functions that very of-

ten model accelerometer-based time sequences. The results summarized by Tables 5 and 6

represent two of more complex data and their projection on the complexity space in terms

of the Hurst exponent.
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Example 1. Weierstrass Function (differentiable on a set of measure zero)

f (t, h) ≡
30

∑
n=0

2−nh cos(2nt) (5)

Table 5. Approximation of the Hurst exponent in (5) of the Weierstrass function with 222 data points.

Fractal Dimension (FD) Hurst Exponent FD Approximation Error

1.1 0.9 1.01 0.09
1.3 0.7 1.22 0.08
1.5 0.5 1.44 0.06
1.7 0.3 1.65 0.05
1.9 0.1 1.87 0.03

Example 2. Fractional Brownian Motion Process (non-differentiable anywhere)

fBm(t, h) ≡
1

Γ
(

h + 1
2

)

∫ t

0
(t − s)h−1/2 dB(s), where (6)

Γ is the Gamma function, h is the Hurst index, and B(·) is the Wiener process.

Table 6. Approximation of the Hurst exponent in (6) of a Fractal Brownian Motion with 222 data

points with mean 0 and variance 1.

Fractal Dimension (FD) Hurst Exponent FD Approximation Error

1.1 0.9 1.14 0.04
1.3 0.7 1.32 0.02
1.5 0.5 1.44 0.06
1.7 0.3 1.65 0.05
1.9 0.1 1.85 0.05

3.2. Stochastic Extrapolation of BD Meso-Scale Data Projection

Consider n self-similar stochastic processes X(i) containing m complexity mesoscopic

projections, H(X(i), m), of its microscopic, possibly sensory, data in domain Ω
def
= [0, 1]n,

n ≥ 1. The notation H(X(i), m) means that the microscale time sequence is divided into

m segments, say 129 minutes, for which the Hurst exponent is computed as described

in Section 3.1 and visualized at Figure 3. We construct a Probability Density Function

(PDF) for each of the sequences representing complexity representation, H(X(i), m), of the

realization of X(i), i.e., we obtain a projection

X(i) → PDF(H(X(i)), m), for each i ≥ 1. (7)

Consider a process Y with complexity projection of its realization {yi}
k
i=1, k ≪ m, and

its corresponding PDF(Y, k). Consider the optimization problem

i0 ≡ Argmin
{

∥PDF(Y, k)− PDF(X(i), m)∥Lp(Ω), i = 1, . . . , n
}

. (8)

Finally, construct an extended process Z by the union of the original realization Y and

its optimized extension X(i0). Specifically,

Z
def
=
{

yk
i=1

}

∪
{

xi0(j)m
j>k

}

. (9)

A different approach is considered in [15].
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Identification of Mental Episodes

Assume a diffusional structure of the Hurst exponent evolution. This assumption

is important because it is enabled by the presence of mood-persistence models using the

Hurst exponent (This approach is similar to the Black–Scholes model used in financial math-

ematics. The difference is the absence of Dirac-like arbitrary changes in mental disorders.

The considered approach resembles more porous media diffusion or apparent diffusion

modeling of a cancer treatment-related drug absorption). We propose an extrapolation

strategy as follows.

Consider the Fractional Gaussian Noise Process as a choice used to build a library of

possible mesoscale scenarios. First, compute the variance of the original Hurst exponents,

X, Card X = n , while considering the mesoscale mean to be zero. Second, determine

the PDF of the original Hurst Exponent evolution using its mesoscale resolution. Third,

build a microscale library of stochastic processes Y, Card Y = m, m > n, using FGNP with

exponents hi ∈ (0, 1), with i ≫ 1. The number of considered data time-sequence points is

an extended number of the original Hurst exponent mesoscale resolution. Fourth, solve

Arcmin
{

||PDF(X)− PDF(Yi)||Lp(Ω) | i = 1, . . . , m
}

, p > 1.

An example of the application of this procedure is shown in Figure 9 using BD patient

activity analytic data. This procedure also carries a promise of predicting mania relapses,

which is one of the unsolved problems.

Figure 9. A PDF pronunciation of layered BD structure is detected by the presence of the three

local extrema. The orange PDF correspond to a classification model based on 150 library scenarios

detecting a specific form of BD. This approach is used to predict evolution as well as recurrence of

mental states using objectively measured signs and symptoms. The blue PDF curve corresponds to

the data of patient C207.

3.3. Evolution of the Mood Change

Consider the evolution of the derivative of the interpolated evolution of the Hurst

exponent as an indicator of a mood evolution in terms of decay or increase of the

Hurst exponent.

Let X be the Hurst exponent sample. Let f [X](·) be Hermite polynomial interpolation

of a complexity sample. Consider the following scenarios shown in Table 7 and in Figure 5

that indicate a mood change from a stable to manic-like behavior after the time segment #

20 indicated the arrow pointing to time evolution.
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Table 7. Phenomenological assessment of mood evolution.

Time Derivative Persistency Change Interpretation

d
dt f [X](t) < 0 Memory pattern decay Manic states expected
d
dt f [X](t) = 0 Stable No mood change
d
dt f [X](t) > 0 Memory pattern elongation Depressive states expected

3.4. Computation of the Bipolar Disorder States Probability

Consider a change in BD mental phase inflection points of the (differentiable) PDF rep-

resenting the mesoscale complexity projection of the self-similar actigraphy time sequences.

The patient C207 data shown in Figure 6 indicate multiple extrema of such complexity-

based representation. We propose to consider the inflection points to be instances of mental

phase changes.

Assuming a smooth PDF, the complexity inflection instances, xi, are given by

Complexity Inflection Points
def
=

{

xi |
d2

dx2
PDF(xi) = 0, i = 1, . . . , n

}

. (10)

Compute

Mood State(i)
def
=
∫ xi+1

xi

PDF(x) dx, i = 1, . . . , n − 1, (11)

define

Mood State(Likely Observable BD Episod)
def
= max{Mood State(i), i = 1, . . . , n − 1}. (12)

Considering a BD patient with the code name C207, the plots in Figures 5 and 7 and

Table Table 4 indicate that the patient’s depressive states are most observable at around the

Hurst exponent equal to 0.9, with the number of states given by n = 3. Moreover, Figure 7

allows the identification of the time segments when high-probability states occur.
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Appendix A

Example of Clinical Application

Subject C207 is clinically in a clear manic state from 17th to 21st of November 2017

and appears to improve from then on, c.f., Table A3. Collecting the complexity indices,
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confirms the clinical diagnoses in more detail. The considered data do not show any clear

periods of depression from a clinical point of view. The data presented in the Tables A1–A3

were collected in the year 2017.

Table A1. The first batch of accelerometer data corresponding to subject C207 represented by

their Hurst exponents upon verification of their self-similarity. Complexity based Explanation:

Moderate to Higher activity. Evaluation: Negative correlation, i.e., unpredictability. YMRS 29 means

Moderate mania.

Day 1 YMRS Day/Night Start End H(x-Accel) H(y-Accel) H(z-Accel) Mean

Day 15:31 17:30 0.3464 0.1455 0.3726 0.2881

11/17 29
Day 17:31 19:30 0.3204 0.2807 0.2417 0.2809
Day 19:31 21:30 0.2070 0.2601 0.0604 0.1789

Night 21:31 23:30 0.0834 0.0847 0.1738 0.1140

Mean 0.2393 0.1927 0.2122
Variance 0.0108 0.0065 0.0128

Figure A1. The bar graph corresponds to the results shown at Table A1. The plot seems to confirm

the clinical diagnosis of mania.

Table A2. The table indicates five days into the medicated treatment compared to the data of Table A1

and bar chart Figure A1. The Hurst exponent is computed using 120 min segments. Complexity

based Explanation: Moderate activity. Evaluation: unpredictability. YMRS 16 means Possible mania.

Day 5 YMRS Day/Night Start End H(x-Accel) H(y-Accel) H(z-Accel) Mean

Night 23:31 01:30 0.1555 0.3079 0.4195 0.2943
Night 01:31 03:30 0.2912 0.3561 0.2460 0.3306
Night 03:31 05:30 0.2006 0.1687 0.0877 0.1523
Night 05:31 07:30 0.5927 0.3339 0.1375 0.1769
Day 07:31 09:30 0.1547 0.2614 0.1846 0.2002
Day 09:31 11:30 0.1469 0.1876 0.2635 0.1990

11/21 16 Day 11:31 13:30 0.3501 0.3152 0.2630 0.3305
Day 13:31 15:30 0.1124 0.1684 0.1869 0.1559
Day 15:31 17:30 0.0794 0.0466 0.3578 0.1613
Day 17:31 19:30 0.0816 0.2563 0.2460 0.1949
Day 19:31 21:30 0.2563 0.2815 0.0893 0.2088

Night 21:31 23:30 0.3337 0.4172 0.2012 0.3117
Night 23:31 01:30 0.1459 0.4228 0.2403 0.2690

Mean 0.1821 0.2711 0.2373
Variance 0.0087 0.0106 0.0099
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Figure A2. Graphical representation of the data presented by Table A2.

Table A3. The C207 data confirm an improvement of the patient state upon the applied medication.

Complexity based Explanation:: Lower to Moderate Activity. Evaluation: Negative Correlation

Unpredictability

Day 5 YMRS Day/Night Start End H(x-Accel) H(y-Accel) H(z-Accel) Mean

Night 23:31 01:30 0.1469 0.3331 0.1105 0.1965
Night 01:31 03:30 0.9899 0.7723 0.3468 0.7523
Night 03:31 05:30 0.5097 0.0869 0.5468 0.3812
Night 05:31 07:30 0.2433 0.1762 0.3101 0.2432
Day 07:31 09:30 0.5207 0.1631 0.4726 0.3855

11/27 12 Day 09:31 11:30 0.2611 0.1610 0.0751 0.1657
Day 11:31 13:30 0.0839 0.3511 0.2116 0.2155
Day 13:31 15:30 0.3057 0.3232 0.3278 0.3186
Day 15:31 17:30 0.0846 0.2027 0.1391 0.1424
Day 17:31 19:30 0.3397 0.1475 0.3222 0.2699
Day 19:31 21:30 0.3213 0.4062 0.2589 0.3288

Night 21:31 23:30 0.7485 0.3255 0.1511 0.4083

Mean 0.3721 0.2873 0.2927
Variance 0.0595 0.0307 0.0264

Figure A3. The bar chart corresponds to the data shown at Table A3.
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